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ABSTRACT
Background: South Asians are at higher risk for cardiometabolic disease than many other racial/ethnic minority groups.

Diet patterns in US South Asians have unique components associated with cardiometabolic disease.

Objectives: We aimed to characterize the metabolites associated with 3 representative diet patterns.

Methods: We included 722 participants in the Mediators of Atherosclerosis in South Asians Living in America (MASALA)

cohort study aged 40–84 y without known cardiovascular disease. Fasting serum specimens and diet and demographic

questionnaires were collected at baseline and diet patterns previously generated through principal components analysis.

LC-MS–based untargeted metabolomic and lipidomic analysis was conducted with targeted integration of known

metabolite and lipid signals. Linear regression models of diet pattern factor score and log-transformed metabolites

adjusted for age, sex, caloric intake, and BMI and adjusted for multiple comparisons were performed, followed by elastic

net linear regression of significant metabolites.

Results: There were 443 metabolites of known identity extracted from the profiling data. The “animal protein” diet

pattern was associated with 61 metabolites and lipids, including glycerophospholipids phosphatidylethanolamine PE(O-

16:1/20:4) and/or PE(P-16:0/20:4) (β: 0.13; 95% CI: 0.11, 0.14) and N-acyl phosphatidylethanolamines (NAPEs) NAPE(O-

18:1/20:4/18:0) and/or NAPE(P-18:0/20:4/18:0) (β: 0.13; 95% CI: 0.11, 0.14), lysophosphatidylinositol (LPI) (22:6/0:0) (β:

0.14; 95% CI: 0.12, 0.17), and fatty acid (FA) (22:6) (β: 0.15; 95% CI: 0.13, 0.17). The “fried snacks, sweets, high-fat dairy”

pattern was associated with 12 lipids, including PC(16:0/22:6) (β: –0.08; 95% CI: –0.09, –0.06) and FA (22:6) (β: 0.14;

95% CI: –0.17, –0.10). The “fruits, vegetables, nuts, and legumes” pattern was associated with 5 metabolites including

proline betaine (β: 0.17; 95% CI: 0.09, 0.25) (P < 0.0002).

Conclusions: Three predominant dietary patterns in US South Asians are associated with circulating metabolites

differentiated by lipids including glycerophospholipids and PUFAs and the amino acid proline betaine. J Nutr 2022;0:1–

9.
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Introduction

South Asians (individuals of Indian, Pakistani, Bangladeshi,
Nepali, and Sri Lankan descent) are at higher risk for
cardiovascular disease and diabetes than many other racial and
ethnic groups (1–3). About 23% of South Asians have diabetes,
which often precedes coronary artery disease (4). On average,
South Asians develop coronary heart disease 10 y earlier than
people identifying as a different race or ethnic group, and
50% of heart attacks in South Asians occur before the age of
50 (5).

In this population, diet quality and pattern of intake are
strong, modifiable risk factors for cardiometabolic disease (6, 7).

Prior investigations with South Asian populations in the
diaspora have characterized unique diet patterns influenced by
both heritage and emigration (8, 9). We previously examined
diet patterns in the Mediators of Atherosclerosis in South
Asians Living in America (MASALA) cohort, in which habitual
dietary intake was characterized with a culturally concordant
food-frequency questionnaire (10). We identified 3 major diet
patterns: Animal Protein; Fried Snacks, Sweets, High-Fat Dairy,
and Fruits, Vegetables, Nuts, Legumes (11), which have unique
associations with traditional risk factors for cardiometabolic
disease. The increased risk associated with certain diet patterns
may be tied to intermediate metabolic markers seen in South
Asians, such as a pattern of atherogenic dyslipidemia, tendency

C© The Author(s) 2022. Published by Oxford University Press on behalf of the American Society for Nutrition. All rights reserved. For permissions, please e-mail:
journals.permissions@oup.com
Manuscript received March 4, 2022. Initial review completed August 3, 2022. Revision accepted August 18, 2022.
First published online 30, 2022; doi: https://doi.org/10.1093/jn/nxac191. 1

D
ow

nloaded from
 https://academ

ic.oup.com
/jn/advance-article/doi/10.1093/jn/nxac191/6679106 by U

C
 - San Francisco user on 13 O

ctober 2022

mailto:journals.permissions@oup.com


towards larger ectopic adipose tissue deposits, and lower muscle
mass and poor beta-cell function (2, 12). Little is known about
the mechanisms and process by which these particular diet
profiles translate into metabolic phenotypes that cause higher
cardiometabolic risk.

The identification of metabolites, easily measurable and
present in serum, urine, or tissue, can help to shed light on the
phenotypic links between diet and cardiometabolic disease in
this high-risk population (13). A panel of metabolites may both
be able to serve as a biomarker for diet intake and help clarify
and measure the metabolic effects of that diet intake.

In this analysis, we aimed to establish representative
metabolites for predominant diet patterns in South Asians who
are part of the full MASALA study.

Methods
Participants

Data were from South Asians who participated in the MASALA
community-based cohort study and had complete diet and metabolomic
data. The detailed methods have been described elsewhere (10). Briefly,
MASALA is a prospective cohort study that enrolled community-
dwelling individuals living in the San Francisco Bay Area and the
greater Chicago areas from 2010 to 2013. Participants self-identified
as having South Asian ancestry and were aged 40–84 y and without
known cardiovascular disease. Those taking nitroglycerin, with active
cancer, with impaired cognitive ability, with a life expectancy less
than 5 y, who lived in a nursing home, or who had plans to
relocate were excluded. The University of California, San Francisco,
and Northwestern University Institutional Review Board approved the
study protocol and all study participants provided written informed
consent.

Demographic and diet data
Each participant underwent in-person interviews to determine age, sex,
medical history, physical activity, smoking status, and alcohol intake.
Food-group intake was collected with the Study of Health Assessment
and Risk in Ethnic Groups (SHARE) South Asian Food Frequency
Questionnaire, which was developed and validated in South Asians in
Canada (14). The food-frequency questionnaire included 163 items,
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with 61 items unique to the South Asian diet, and assessed usual eating
habits, frequency. and serving sizes over the prior 12 mo.

Dietary pattern creation
Individual food items from the SHARE food-frequency questionnaire
were divided into 29 predefined subgroups reflecting likeness, under-
lying nutrient composition, and South Asian culinary usage. Several
foods (e.g., coffee) were kept as individual categories given their
high reported intake. We excluded 1 individual with incomplete food-
frequency questionnaire data and another 6 who did not meet a priori
criteria of daily caloric ranges (600–6000 kcal/24 h).

Principal components analysis with varimax rotation was previously
used to identify the most prevalent groupings of major food-group
categories in our population (15). After identifying 3 patterns that
explained the majority of variance, the patterns were named according
to their major components: “Animal protein” (9.3% variance);
“Fried Snacks, Sweets, High-Fat Dairy” (7.4% variance); and “Fruits,
Vegetables, Nuts, Legumes” (6.5% variance). Each participant was
assigned a factor score for each dietary pattern based on the correlation
of his or her food-frequency questionnaire data with the food groupings
in the 3 prevalent patterns. The diet patterns Animal Protein and Fried
Snacks, Sweets, High-Fat Dairy each had continuous factor scores that
were divided into tertiles for ease of interpretation.

Metabolic Profiling by Ultra-Performance LC-MS
A total of 754 serum samples obtained at the baseline examination
(2010–2013) were analyzed by ultra-performance LC-MS (UPLC-MS)
using previously described analytical and quality-control procedures
(16, 17). Sample analysis was performed in an order designed to be
orthogonal to clinical and demographic data metadata. For quality-
control assessment and data pre-processing, a study reference (SR)
sample was prepared by pooling equal parts of each study sample.

Serum samples were prepared and analyzed using UPLC-MS, as
previously published (16, 17). In brief, 50-μL aliquots were taken
from each sample, diluted 1:1 with ultrapure water for lipid profiling
and 1:1.4 for small molecule profiling. Protein was removed by
addition of organic solvent to the diluted sample (4 volumes of
isopropanol per volume of diluted sample for lipidomic profiling and
3 volumes of acetonitrile per volume of diluted sample for small
molecule profiling) followed by mixing and centrifugation to yield
a homogenous supernatant. Aliquot sets of prepared samples were
subjected to chromatographic separation using an Acquity UPLC
(Waters Corporation) system. Lipidomic profiling was performed using
reverse-phase chromatography (RPC) with a 2.1- × 100-mm Acquity
BEH C8 column maintained at 55◦C. The chromatographic separation
was performed using a binary mobile phase system consisting of (A) a
50:25:25 mixture of H2O:Acetonitrile (ACN):Isopropanol (IPA) with
5 mm ammonium acetate, 0.05% acetic acid, and 20 μM phosphoric
acid and (B) 50:50 ACN:IPA with 5 mm ammonium acetate and
0.05% acetic acid. Polar metabolite profiling was performed using
hydrophilic interaction LC (HILIC) with a 2.1- × 150-mm Acquity BEH
HILIC column maintained at 40◦C. The chromatographic separation
was performed using a binary mobile phase system consisting of
(A) acetonitrile with 0.1% formic acid and (B) 20 mM ammonium
formate in water with 0.1% formic acid. Both separation types were
coupled to high-resolution MS (Xevo G2-S TOF mass spectrometers;
Waters Corporation) via a Z-spray electrospray ionization source. The
lipidomic profiling assay was conducted in both positive and negative
ion modes (generating lipid RPC+ and lipid RPC– datasets), while the
HILIC assay was performed in the positive ion mode only (generating
the HILIC+ dataset). An SR sample was acquired every 10 study
samples throughout the analysis. In addition, a dilution series was
created from the SR and analyzed immediately prior to and after
the study sample analysis for use in signal filtering, as described pre-
viously (16).

Raw data were converted to the mzML open-source format and
signals below an absolute intensity threshold of 100 counts were
removed using the MSConvert tool in ProteoWizard (18). Metabolite
signal extraction was performed using PeakPantheR, an open-source
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package to detect, integrate, and report predefined and annotated
lipids and metabolites from an in-house database (19). Elimination of
potential run-order effects and filtering of the extracted metabolites
were performed using the nPYc-Toolbox, an open-source package for
data pre-processing (20). Only those measured with high accuracy
(relative CV in SR samples <20%) and high precision (correlation to
dilution in SR dilution series >0.8) were retained and put forward for
biological analysis. Of the 754 total study samples, 32 were not included
in our analysis due to insufficient sample volume and 5 were excluded
due to missed injection in the HILIC assay.

Cardiometabolic factors measured at baseline
Weight was determined using a digital scale, height with a stadiometer,
and waist circumference using a measuring tape halfway between the
lower ribs and the anterior superior iliac spine, at the site of greatest
circumference. Blood samples were obtained after a requested 12-h fast.
Fasting plasma glucose was measured using the hexokinase method
(Quest Diagnostics). An oral-glucose-tolerance test was performed, in
which participants consumed a 75-g oral-glucose solution, and blood
samples for plasma glucose and insulin were taken after 120 min. Type 2
diabetes was defined as fasting glucose ≥126 mg/dL, 2-h post-challenge
glucose ≥200 mg/dL, or use of a glucose-lowering medication. A total
of 717 participants were included in our analysis.

Statistical methods
Before modeling, relative abundances of metabolites were log-
transformed to reduce the potential for outliers to influence the
model. Multivariable linear regression analyses were used to determine
associations of diet pattern factor score and relative abundance of
each independent metabolite. The analyses were adjusted for age, sex,
calories per day, and BMI in model 1 and further adjusted for presence of
diabetes, hypertension, use of statin medication, smoking, and alcohol
intake of ≥1 drink/wk as categorical variables and exercise [metabolic
equivalent (MET)-min/wk] as a continuous variable. We applied the
conservative Bonferroni method to adjust for multiple comparisons,
with an alpha <0.00002 deemed significant. To adjust for unreliable
parameter estimates that may occur when using multiple regression
models in the setting of multicollinearity, we performed an elastic-
net regularized regression model to evaluate metabolites that were
significant in independent analyses. The elastic-net model allowed for
a penalized logistic regression on all biomarkers simultaneously to
identify the metabolites most highly associated with diet pattern score.
Optimal parameters for the penalty value (α) and the regularization
penalty (λ) were determined by 10-fold cross-validation. Briefly, data
in the full dataset were randomly assigned to 1 of 2 equal-sized
datasets. Model performance was judged based on root mean square
error, with the model chosen minimizing mean cross-validated error.
Optimization was completed using STATA’s “elasticnet” and post-
estimation commands for model prediction (StataCorp). We then
further adjusted these linear regression models for physical activity,
diabetes, and family history of diabetes. The analysis was completed
using STATA (version 16.1, 2021; StataCorp).

Results

In total, 443 metabolites and lipids were examined in this
analysis (Supplemental Table 1). MASALA participants in the
highest tertile of factor score of the Animal Protein pattern were
less likely to be women, had a lower total daily energy intake,
but were of a similar BMI than those who most often consumed
the Fried Snacks, Sweets, High-Fat Dairy, or Fruits, Vegetables,
Nuts, Legumes patterns (Table 1). A similar proportion of
women most often consumed the Fried Snacks, Sweets, High-
Fat Dairy Pattern and Fruits, Vegetables, Nuts, Legumes diet
patterns (47%).

After elastic-net regularized regression, and further ad-
justment for relevant covariates, the Animal Protein diet

pattern was associated with 61 metabolite and lipid species. It
was positively associated with phospholipids, sphingomyelins,
ceramides, and other lipid species including omega-3 (n–3)
fatty acids, and negatively associated with long-chain acyl-
carnitines and trigonelline. The metabolites most highly
associated with the Animal Protein diet pattern were as
follows: phosphotidylethanolamine (PE)(O-16:1/20:4) and/or
PE(P-16:0/20:4) (0.13; 95% CI: 0.11, 0.14) and N-acyl phos-
phatidylethanolamines (NAPEs) (O-18:1/20:4/18:0) and/or
NAPE(P-18:0/20:4/18) (0.13; 95% CI: 0.11, 0.14), LPI
(22:6/0:0) (0.14; 95% CI: 0.12, 0.17) and fatty acids (FAs)
(22:6) (0.15; 95% CI: 0.13, 0.17) (Table 2). The Fried Snacks,
Sweets, High-Fat Dairy pattern was associated with 12 lipids,
the top 2 associations of which were phosphatidylcholine
(PC)(16:0/22:6) (–0.08; 95% CI: –0.09, –0.06) and FA(22:6)
(0.14; 95% CI: –0.17, –0.10) (Table 3). The Fruits, Vegetables,
Nuts, Legumes diet was associated with 5 metabolites, including
a positive association with proline betaine (0.17; 95% CI: 0.09,
0.25) (Table 4).

Discussion

Participants in the MASALA study consumed 3 predominant
dietary patterns: Animal Protein; Fried Snacks, Sweets, High-
Fat Dairy; and Fruits, Vegetables, Nuts, Legumes, which were
each associated with particular metabolite and lipid patterns.
The metabolic profile associated with Animal Protein pattern
was represented by glycerophospholipids, acylcarnitines, and
ceramides, which carry high metabolic risk. The Fried Snacks,
Sweets, High-Fat Dairy Pattern was inversely associated with
a number of lipids, including an n–3 fatty acid derived from
seafood and linked to lower cardiovascular risk (21). Higher
consumption of the Fruits, Vegetables, Nuts, Legumes pattern
was associated with a higher abundance of proline betaine,
a marker of citrus consumption, and a lower risk for type 2
diabetes in prior studies (22) and lower relative abundance of
several lipid subspecies.

The metabolite and lipid patterns associated with a high con-
sumption of each diet pattern have implications for metabolic
health. In particular, proline betaine was positively associated
with the most “prudent” diet pattern, Fruits, Vegetables, Nuts,
Legumes, and negatively associated with the Animal Protein
diet pattern. There is a correlation between proline betaine and
fruit intake in this sample (Supplemental Table 2). This amino
acid and its analog glycine betaine have been associated with
lower risk for diabetes in the Diabetes Prevention Program
and other trials and cohort studies (22, 23). Betaine is derived
from the amino acid glycine and acts as a methyl donor
to allow the conversion of homocysteine to methionine (24).
Proline betaine is also a biomarker of citrus consumption
(25). Deficiency of betaine is additionally linked toh increased
severity of nonalcoholic fatty liver disease (NAFLD) (26).
In our prior work, the Fruits, Vegetables, Nuts, Legumes
pattern was associated with a lower prevalence of metabolic
syndrome (11). Despite these positive observational findings
and promising preclinical data from animal studies, direct
supplementation of betaine in humans during a randomized
controlled trial showed only minor improvements in fasting
glucose, and no changes in dynamic measurements of insulin
sensitivity and intrahepatic triglycerides (27). Together, this
suggests that an exploration of the choline-betaine metabolic
pathways and downstream metabolites may yield insights into
the pathogenesis of prediabetes and NAFLD.
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TABLE 3 Metabolites associated with Fried Snacks, Sweets, High-Fat Dairy diet pattern elastic net regularized regression adjusted
for age, sex, BMI, and energy intake1

Model 1, adjusted for age, sex, BMI, energy intake2,3 Model 2, fully adjusted4

ß2 95% CI (lower) 95% CI (upper) P ß3 95% CI (lower) 95% CI (upper) P

PC(16:0/22:6) − 0.09 − 0.11 − 0.06 1.16 × 10−08 − 0.07 − 0.10 − 0.04 1.30 × 10−05

LPE(18:2/0:0) 0.05 0.02 0.07 4.37 × 10−05 0.03 0.01 0.06 4.13 × 10−03

LPI(22:6/0:0) − 0.08 − 0.12 − 0.04 1.00 × 10−05 − 0.07 − 0.11 − 0.03 3.08 × 10−04

PC(16:0/22:4) 0.07 0.04 0.09 1.73 × 10−08 0.05 0.03 0.08 1.48 × 10−05

PC(18:0/22:4) 0.08 0.05 0.11 1.71 × 10−07 0.07 0.04 0.10 6.49 × 10−06

PC(16:0/20:5) − 0.09 − 0.13 − 0.06 1.65 × 10−08 − 0.07 − 0.11 − 0.04 8.54 × 10−06

PC(16:0/22:6) − 0.08 − 0.09 − 0.06 1.71 × 10−16 − 0.06 − 0.08 − 0.05 1.22 × 10−11

PA(16:0/18:1) − 0.04 − 0.06 − 0.02 8.83 × 10−05 − 0.04 − 0.06 − 0.01 2.59 × 10−03

FA(22:6) − 0.14 − 0.17 − 0.1 1.96 × 10−13 − 0.11 − 0.15 − 0.07 7.22 × 10−09

PC(18:0/22:5) 0.07 0.04 0.11 1.52 × 10−05 0.07 0.03 0.10 9.11 × 10−05

SulfoHexCerd(18:1/24:0-OH) − 0.05 − 0.07 − 0.02 6.15 × 10−05 − 0.05 − 0.07 − 0.02 5.74 × 10−05

SulfoHexCerd(18:1/24:1-OH) − 0.05 − 0.07 − 0.03 3.55 × 10−05 − 0.04 − 0.07 − 0.02 2.72 × 10−04

1All metabolites are significant at P < 0.0002. FA, Fatty Acid; LPC, Lysophosphatidylcholine; LPE, Lysophosphatidylethanolamine; LPI, Lysophosphatidylinositol; MET, metabolic
equivalent; PC, phosphatidylcholine; PE, phosphatidylethanolamine; SulfoHexosyl Ceramide, SulfoHexCer(d).
2Adjusted for age, sex, BMI, and energy intake.
3Increase in log-metabolites per 1-point increase in dietary pattern scores.
4Further adjusted for diabetes, normoglycemic prediabetes or diabetes, hypertension, statin use, physical activity (MET-min/wk), alcohol use ≥ 1 drink/wk, and smoking.

Long- and short-chain acylcarnitines have previously been
associated with prevalent and incident diabetes (28, 29). Short-
chain acylcarnitines, specifically acylcarnitine (CAR)com(3:0)
and CAR(5:0) acylcarnitines, are breakdown products of
branched-chain amino acid metabolism and are associated with
insulin resistance (30). In a previous assessment diet patterns
and metabolites in the MASALA pilot study (n = 150), a
similar “Western/non-vegetarian” diet pattern was associated
with short-chain acylcarnitines (31). In our study, there was a
direct association between increased consumption of the Animal
Protein pattern and propionylcarnitine [CAR(3:0)]. There have
been conflicting associations between long-chain acylcarnitines
and the presence of diabetes. Impaired FA oxidation and
oxidative stress due to peripheral insulin resistance may cause
a buildup of long-chain acylcarnitines (29), resulting in a
decrease in insulin synthesis and associations with prevalent
diabetes. Conversely, several cohort studies, including the
PREvención con DIeta MEDiterránea (PREDIMED) study and
our prior work in the MASALA study, show inverse associations
between long-chain acylcarnitine abundance and both prevalent
diabetes and future glucose intolerance (32, 33). The current
investigation found a positive association between the Animal
Protein pattern and CAR(18:0) and an inverse association with
CAR(14:2), CAR(18:3), CAR(20:2), and CAR(20:3). In support
of the association between this diet pattern and circulating

CAR(18:0), a randomized trial of red meat intake also revealed
positive associations with CAR(18:0) (34). Our prior work
in the MASALA cohort identified a relation between higher
baseline CAR(18:0) and subsequent lower glycated hemoglobin
at 5-y follow-up (33) in cohort members without baseline
diabetes. These findings suggest that animal protein intake is
associated with CAR(18:0); however, further associations with
diabetes are varied in this population, and may depend on the
prevalence of other diet components.

The Animal Protein pattern was also associated with a
higher abundance of multiple ceramides and sphingomyelins,
including Ceramide (Cer)(d18:1/26:1) and sphingomyelin (SM)
(d18:1/18:0). Ceramides, which are bioactive sphingolipids,
have strong ties with diabetes risk (35, 36). Both circu-
lating ceramides and sphingomyelins have been associated
with impaired glucose homeostasis (37, 38). Ceramides are
also associated with intake of saturated fats and with
NAFLD (39).

In our investigation, NAPEs were associated with consump-
tion of the Animal Protein pattern, and were correlated with
red meat, poultry, fish, eggs, and coffee intake (Supplemental
Table 3). NAPEs’ hydrolysis generates N-acylethanolamines
that are precursors of endocannabinoids synthesized in phos-
pholipid membranes. Endocannabinoids may be involved in
signaling between the gut microbiotia and adipose tissue,

TABLE 4 Metabolites associated with Fruits, Vegetables, Nuts, Legumes diet pattern elastic-net regularized regression adjusted for
age, sex, BMI, and energy intake1

Model 1, adjusted for age, sex, BMI, energy intake2,3 Model 2, fully adjusted4

ß2 95% CI (lower) 95% CI (upper) P ß3 95% CI (lower) 95% CI (upper) P

Proline betaine 0.17 0.09 0.25 1.0 × 10−04 0.18 0.09 0.26 3.65 × 10−05

LPC(22:4/0:0) − 0.08 − 0.11 − 0.04 5.86 × 10−06 − 0.07 − 0.10 − 0.03 1.17 × 10−04

PC(18:0/22:4) − 0.06 − 0.09 − 0.03 1.0 × 10−04 − 0.05 − 0.09 − 0.20 1.67 × 10−03

SM(d19:1/16:0) − 0.07 − 0.1 − 0.04 7.40 × 10−05 − 0.06 − 0.09 − 0.03 1.42 × 10−05

LPE(22:4/0:0) − 0.12 − 0.18 − 0.07 1.36 × 10−05 − 0.11 − 0.17 − 0.05 1.43 × 10−04

1All metabolites are significant at P < 0.0002. LPC, Lysophosphatidylcholine; LPE, Lysophosphatidylethanolamine; MET, metabolic equivalent; PC, phosphatidylcholine; SM,
sphingomyelin.
2Adjusted for age, sex, BMI, and energy intake.
3Increase in log-metabolites per 1-point increase in dietary pattern scores.
4Further adjusted for diabetes, normoglycemic prediabetes or diabetes, hypertension, statin use, physical activity (MET-min/wk), alcohol use ≥1 drink/wk, and smoking.
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and have been implicated in metabolic disorders such as
obesity and type 2 diabetes (40). In some reports NAPEs have
been shown to be increased in plasma after high-fat feeding
and regulate food intake (41). Phosphotidylethanolamines
PE(O-16:1/20:4) and/or PE(P-16:0/20:4) were significantly and
positively associated with intake of the Animal Protein pattern,
and are an essential bioactive lipid abundant in mammalian
cells (42). One study has shown a potential link between this
broader lipid species class and decreased odds of acute coronary
syndrome (43); however, the particular risk conferred by the
lipids found in our analysis is not known.

Several important PUFAs differed between patterns, includ-
ing lipids with DHA FA(22:6) moieties. These n–3 fatty acids
are correlated with the major non-vegetarian components,
including red meat, poultry, eggs, and fish consumption in
the Animal Protein pattern (Supplemental Table 3); negatively
correlated with butter/ghee and legume intake in the Fried
Snacks, Sweets, High-Fat Dairy diet pattern (Supplemental
Table 4); and have previously been linked to a lower risk
of cardiovascular disease (44). Lipids with these moieties are
lower in abundance with greater consumption of the Fried
Snacks, Sweets, High-Fat Dairy pattern, suggesting that there
may be lower consumption of these potentially beneficial
FAs in this unhealthful vegetarian pattern. n–6 FAs found in
lean meat, milk, and eggs contain arachidonic acid FA(20:4),
which is abundant in phospholipids and important for cellular
signaling in the brain and skeletal muscle, and was higher with
consumption of the Animal Protein pattern. High levels of this
FA may be affected by oxidative stress and play a role in the
pathogenesis of fatty liver and diabetes (45) and cardiovascular
disease (46).

In conclusion, our findings suggest that prevalent diet
patterns in the MASALA study are associated with groups
of metabolites and lipids linked with cardiometabolic disease.
The Fruits, Vegetables, Nuts, Legumes pattern associated
with proline betaine has been linked to reduced risk for
diabetes. The Animal Protein pattern was associated with
NAPEs, sphingomyelins, and ceramides and long- and short-
chain acylcarnitines. Furthermore, the Animal Protein and
Fried Snacks, Sweets, High-Fat Dairy patterns had opposite
associations with long-chain n–3 FAs, which have been linked
to lower risk of cardiovascular disease. These conclusions are
limited by the absence of data on intraindividual variability
of metabolites. These findings support the next steps in the
investigation of diet and metabolites: the study of metabolites as
biomarkers for measuring diet quality and to determine targeted
dietary advice to reduce risk of cardiometabolic disease.
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